On Non-Computab]e Funections

By T. RADO

(Manuseript received November 12, 1961)

The construction of non-computable functions used in this paper 1s based
on the principle that a finite, non-empty set of non-negative integers has a
largest element. Also, this principle is used only for sets which are excep-
tionally well-defined by current standards. No enumeration of computable
Junctions is used, and in this sense the diagonal process s not employed.
Thus, it appears that an apparenily self-cvident principle, of constant use
in every area of mathematics, yields non-constructive entities.

I. INTRODUGTION

The purpose of this note is to present some very simple instances of
non-computable functions. Beyond their simplicity, these examples
throw light upon the following basic point. If a function J(x) is to serve
as an example of a non-computable function, then Sf(2) must be well-
defined in some generally accepted sense; hence the efforts to construct
examples of non-computable functions reveal the general conviction
that over and beyond the class of computable (general recursive) func-
tions there is a much wider class, the class of well-defined functions. The
scope of this latter class is vague; in some quarters, there exists a belief
that this class will be defined some day in precise terms acceptable to
all. The examples of non-computable functions to bé discussed below
will be well defined in an extremely primitive sense; we shall use only
the principle that a non-empty finite set of non-negative integers has a
largest element. Furthermore, we shall use this principle only for excep-
tionally well-defined sets; and thus our construetion will rest upon con-
siderations which oceur constantly in every area of mathematics. It may
be of interest to note that we shall not use an enumeration of computable
functions to show that our examples are non-computable functions.
Thus, in this sense, we do not use the diagonal process.

II. TERMINOLOGY

We shall use binary Turing machines (that is, Turing machines with
the binary alphabet 0, 1), in the sense of the excellent presentation of
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Kleene's Metamathemalics (see Ref)), with the following exceptions.
Iirst, we do not permit a center shift; thus the machine must shift after
the execution of an “overprint’’ instruction (the purpose is to simplily
the following presentation). Second, we shall use the term “eard”” instead
of “state.” The reason is that the examples below were obtained as by-
products of a logical game (the Busy Beaver game deseribed below)
which the writer made up to familiariz® beginners with the idea of a
Turing machine; and it appeared that terms such as state, internal con-
figuration, and the like had a mysterious connotation for beginners.
To illustrate some notational conventions to be used, let us consider
the following example of o binary, 3-card Turing machine.

Ce
0 111
g 105

Here Cy, Cy, C; stand for Card 1, Card 2, and Card 3. On cach card,
the left-most column econtains the alphabet 0, 1. The next column is the
“overprint by” column; the next one is the “shift” column (where 0 is
the code for a left shift and 1 is the code for a right shift). The last col-
umn is the “call eard” column; it contains the index of the next card
to be used, or 0 (zero), where 0 is the code for “Stop.” This notation was
found very convenient in situations where one wanted to enumerate
(serialize) Turing machines with a given number of cards.

The reader is assumed to be familiar with the meaning (in the sense
of Kleene; see Ref.) of the statement that a binary Turing machine
“computes” a funetion f(x). It is understood that we consider only func-
tions of non-negative integers with values which are again non-negative
integers.

11I. THE BUSY BEAVER GAMIS

Consider a potentially both-ways infinite tape (sce Ref.), where cach
square contains a 0 (all-zero tape). Start the 3-card machine described
in Seetion T1 (with its Card 1) under any square. The reader will find
that the machine stops after a few shifts, and when it stops, there are
six ones on the tape. Actually, this particular machine is one of the four
highest scorers (as of today) in the international BB-3 game (the 3-card
deck classification of the Busy Beaver game). The rules in this game are
as follows. ' '

L}
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1. The contestant seleets a positive integer 7; and then makes up his
own #n-card, binary, Turing machine (using the notational conventions
explained in Scetion I1).

1. He starts his machine (with its Card 1) on an all-zero fape, and
satisfies himself that his machine stops alter o certain number s of shifts.

@2, He then submils his entry, as well as the shift-number s, to any
member (in good standing) of the International Busy Beaver Club.

. The umpire first verifies that the entry actually stops exactly
after ¢ shifts. Nofe that this is o decidable issue; the umpire merely
operates the entry, persisting through not more than the specified num-
ber s of shifts. If the entry fails to stop after s shifts, it is rejected; if
it stops after fewer than s shifts, it is returned to the contestant for
correction. After the entry has been verified, its score is the number
of ones on the tape when it stops.

Naturally, the BB-n champion is the contestant who achieved the
highest scord (so far) in the BB-n classification. FFor example, in the
BB-3 classification, the score of 6 was first achieved by R. Hegelman
(U.S. Naval Weapons Laboratory, Dahlgren, Virginia). This score has
been reached since by several others; but nobody knows as yet whether
6 1s the highest possible score in the BB-3 classification. The reader who
tries to setlle this question will soon realize the diflicultios involved in
this sort of problem. Beyond the enormous number of eases to survey,
he will find that it is very hard to see whether certain entries do stop
at all. This is the reason for the requirement that each contestant musi
submit the shift number s with his entry.

1V. HIGHEST SCORI

There arises now the problem of determining the highest possible
score in the BB-n classification. In line with the point of view explained
in the introduction, we formulate this problem with due care and cau-
tion.

Returning to rule 4. of the game, we sce that a valid entry in the
BB classification is a pair (M ,s), such that the following holds.

(a) M is an n-card binary Turing machine.

(b) s is a positive integer.

(¢) M stops after exactly s shifts if started (with its Card C,) on an

all-zero tape.

In discussing rule 4v. above, we noted that we can actually decide
whether or not an entry (i,s) is valid. Also, if (My,8), (Ms,s) are
valid entries such that M, = M., then evidently s, = s ; hence the
number of valid BB-n entries cannot exceed the number N (n) of all
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possible ni-card, binary T'uring machines. It is casy to see that
N(n) = [4(n + 1* (13

Also, there exist valid BB-n entries; for example, on ¢hoosing the 0-line
of Card 1 as 110, one obtaing an entry which stops after one shift.
Accordingly, if we denote by I, the set of all valid BB-n entries (M ,s),
we oblain a non-empty, finite set 2, which has the following features.
(a) We actually exhibit elements of f7, ; so . is non-emply as a
matber of conerete observation,
(b) We not only know that [/, is finite, but for the number N.(n)
of elements of this set of valid entries we have [see (1)] the in-
equalities.

1 < No(n) < N(n) = [d(n + 1)*" (2)

(¢) For every pair (M,s) we can actually decide whether or not
(111 3) e 1'.1" %

Evidently, K, is (by current sta.ndards) an exceplionally well-defined
non-cmpty, finite set. Yet, we shall show below that N.(n), the number
of elements of 7, , is not a computable funetion of n. Next, each valid
entry (M,s) e [4, has a definite score ¢(8,5) assigned to if, (sec Section
I11). Thus, for the same reasons, the set of these scores is an exceptionally
well-defined non-empty finite set of non-negative integers. We denote
by Z(n) the largest clement of this sef.

Thus

2(n) = max [¢(M,s)] for (M) ek, . (3)

We shall sce presently that Z(n) is not a computable function of n.
Let us note, however, that it is entirely possible that 2(n) can be effec-
tively determined for particular values of n. IFor example, evidently
(1) = 1. Also, it has been proved that 2(2) = 4. We noted above
that we know several 3B-3 entries with a score of 6; hence Z(3) = 6,
and it seems plausible that 2(3) = 6. Now while for low values of n
it is quite hard to achicve a respectable score, Dr. C. Y. Lee observed
(in a letter to the writer) that for higher Va,lll(}b of n one can achieve
very large scores. The following proof for the non-computability of 2 (n)
was obtained by developing this comment of Dr. Lee.

V. TIHE GROWTIE OF E(TL)

Let f(x), g(x) be two funetions (as specified in Seetion [1). We shall
write

flz) >— g(=) '
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to state that f(x) > g(x) for x greater than a certain = . Using this
notation, we shall now prove the following theorem.

Iheo;vf‘m Z(n) >— f(n) for cvery computable (that is, general re-
cursive) funetion f(n). Henee 2(n) is not computable.

Proof. Assign a computable Tunction S(x). Introduce the auxiliary
funetion

F(2) = 3 17G) + 4 (4)
Then (see Rel.) F(2) is also computable. Evidently

F(z) 2 f(=). (5)

Fx) = (6)

Fia < L) > Fle), te)

Now since F(x) is computable, we have a binary Turing machine M .
with a certain number €' of cards (states) which computes F(t) (in
the sense described in Kleene; see Ref.). Now assign any integer & = (.
We have then a binary Turing machine 2“7, with & + 1 eavds (slal(‘a)
which prints on an all-zero tape 2 + 1 consce uLlVO ones and stops under
the right-most one of these ones. For e = 2, for example, M® has the
3 cards:

Cy Cs Ca

0 112 0 113 0 101

Now consider the binary Turing machine M7, given by the symbelic
diagram: '

M P s B s W

If the cards of M " are written out with consecutive indices, then it is
seen to have 1 + x + 2C cards. If started on an all-zero tape, M ™ will
first print (going Lo the right) a string of & 4+ 1 consceutive ones; then,
beyond a 0 to the right, it will print a string of F(2) 4+ 1 consecutive
ones; finally, beyond a 0 to the right, it will print a string of F[F(2)] + 1
consceubive ones, (md then will stop (under the right-most 1 it printed).

Thus Ov:dvnlly N o™ is a valid entry i the BB-(1 4 & 4+ 20C) classifi-
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cation with a score equal to
34 a4 ) + FIF(R))
Hence, the maximum score 2(1 + + 2€) in this classilication satisfies
the inequality
1 +a+20)z3+2 + F(x) + FIF(x)] (8)

Now since evidently @ >— (1L + = + 20) and F(z) = 2 [see (6)],
it follows that

F(z) >— (1 + =+ 20). (")
Also, #7(x) is monotone increasing by (7); hence (9) yields
MF()] >— F(1 4+« + 20). (10)

Trrom (8) and (10) we see that
(1 +x+20)>—F1+a+ 20
hence (since F(z) Z f(x))
21 + = +20) >— J(1 + = + 20).
On setting n = 1 + @ + 2C, we obtain finally
2(n) >— [f(n)

and the theorem is proved.

The rate at which Z(x) grows is illustrated by the following intuitive
observation. A Turing machine My for computing /I (x) = x!can be
constructed with not more than 26 states. Let us consider the chain of
Turing machines:

M@ — My — My— My— M.

1i follows from (8) that the number of ones which is produced by this
chain is more than (((a)D 1)L Using the construction of the machine
Ay mentioned above, we may show that by combining these machines
properly, the number of states required for this chain of machines for
& = 7, for instance, is not more than 100. Therefore, £(100) is at least
(((THHHL Since ¥(100) is probably far bigger than this lower bound,
it would be interesting to know how large a lower bhound one can geb
for 2(100).

vi. THE rUNCTioN S(n)
1 is evident from our definitions that the sel, 2, of valid BB-n entries
- - . ' -
coincides with the set of the n-card stoppers, where by a stopper we
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mean a (binary) Turing machine which, if started on an all-zero tape
with its eard C; , will stop after a while. Now the seeond coordinates s
of t_.h‘n v:'-tli(i BB-n entries (M,s) constitute o finite, non-empty set of
P‘om[‘,l\ru 11:Lf~.gcrs; we denote by S(n) the largest element of i-]liH sel..
Thus S(n) is the maximum of the shift-numbers of the n-card stoppers
Clearly .

8(n) =z 2(n). (11)

ll:sd(‘.c‘d, since we do not permil, eenter-shifts, a BB-n entry must shift
ultm‘ln- prints a 1; thus (11) is obvious. From the theorem in Seetion V
and from (11) we sce that

S(n) >— f(n) (12)
for every computable function f(n). Thus S(n) is non-computable (the

reader will readily see that this result is equivalent to the undecidability
of the so-called halting problem).

VII. THE FUNCTION N .(n)

This function, defined above as the number of clements of the set &
(that is, the number of n-card stoppers) does not grow unreasonahl;
fast [sce (2)]. However, we can discuss it as follows. Leb us denote by
N(s;n) the number of those BB-n entries which stop after exactly s
T:.hif ts. Ividently, the computation of N (s,n) can be readily pmg‘;mm:ﬂ;\d-
informally, one finds the value of N(s,n) by running each one of 111(1.
n.-card binary Turing machines [whose number is given by (1)], per-
sisting through not more than the given number s of shifts, and njot'n’w
the number of those that stop after exaetly s shifts. Let us f)ut ;

Glsp) = 1Z;lN('.i,-.'l,), (13)
@(sn) = No(n) — G(sn). (14)

Clearly, (f(s,n) is the number of those BB-n entries that stop after not
more than s shifts; thus G(s;n) = N.(n), and hence $(s,n) = 0. Since
evidently G(s;n) & N.(n) for s = S(n), we sce that S(n) is the smallest
value of s for which ®(s,n) = 0; in symbols:

S(n) = (us)[@(sn) = 0], (15)

where (us) means “the smallest s such that.” I'rom (13)-(15) it follows
(sce Ref.) that if N.(n) were computable then S(n) would be comput-
able too; since we know that S(n) is not compulable, it follows that
N.(n) is non-compulable.
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7.1 Remark

Suppose that, for a certain integer no, we somehow succeeded in
determining the exact value of N(no). From (13)—( 15) it follows that
we can then determine S(no) also, and hence finally =(n). Various
other comments will readily occur to the reader. For example, the easily
proved inequality

S(n) = (n 4 1) =(5n) 257

gives rise to some curious observations.

VIII. SUMMARY

Inspection of the preceding presentation shows that we used in our
constructions only the following “principle of the largest element”:
If E is a non-empty, finite set of non-negative integers, then £ has a
largest element. This principle is used constantly, as a matter of course,
in every field of mathematics. Our examples above show that this prin-
ciple, even if applied only to exceptionally well-defined sets E, may take
us beyond the realm of constructive mathematics. Of course, common
everyday experiences may be used to illustrate this sort of phenomenon.
Tor example, when the writer wanted to find a certain highway on an
automohile trip, he received the following directions from the foreman
of a construction crew: “Drive straight ahead on this road; yvou will
cross some steel bridges; and after you cross the last steel bridge, make
a left turn at the next intersection.” Luckily, the unsolvable problem
implied by this advice was resolved by a member of the construction
erew who volunteered the information that “after you cross the last
steel bridge, there isn't another steel bridge until you reach Richmond,
130 miles away.” The reader may find it amusing to verify, by detailed
study of the excellent book of Kleene (Ref.), that this little story illus-
trates, in a concrete manner, some truly basic points in the theory of
computable functions.
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